
To = 1.577. Figure 5 shows the law of distribution of T(t) as a function of t when m = 1.5 
and 2 (curves ] and 2, respectively). It should be noted that this function is almost linear. 
In addition, the set under the die will be larger for lower nonlinearity indexes m if other 
conditions are equal. 
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NUMERICAL ASYMPTOTIC SOLUTION OF STRENGTH AND VIBRATIONS 

PROBLEMS OF THIN SHELLS OF REVOLUTION 

S. V. Stepanenko UDC 539.3 

For thin shells of revolution whose middle surface has a nonnegative Gaussian curvature, 
a numerical analytical approximate solution is constructed for the class of linear boundary- 
value problems allowing of separation of variables. 

It is known that the solution of each such problem decomposes into a slowly varying part 
and a solution of edge effect type. On this basis, a method of construction the approximate 
solution of the problem is proposed in [I, 2], where it is proposed to seek the slowly vary- 
ing part of the solution by a numerical method, and the edge effects by an asymptotic method. 
On the basis of this method~ an algorithm is constructed in this paper, which can be applied 
to a broader class of problems as compared to [I] because of utilization of the method of 
elimination in the boundary conditions [3]. As an illustration of the method, solutions are 
presented for a number of strength and vibrations problems for shells of different geometries. 

I. Many strength and vibration problems for elastic shells of revolution reduce to 
seeking solutions of a particular kind 

u ~  = = e x p  (Joint -b inx2) US n (x~), ( 1.1 ) 
wren = e x p  (Joint ~ ~nx2)W mn (xl). 

Here t is the time; xl, x2, orthogonal coordinates of the shell middle surface; i = r ~m, 
real integers; and m and n, integers, the subscript ~ takes on the values ] and 2; ul, uu, w, 
displacements in the xl, xu directions and along the external normal. The well-developed 
apparatus of shallow shell theory [4] can be applied to describe solutions of the form (I.I) 
with n~4. In the absence of tangential components of the surface forces, a force function 
~(xl, x2, t) is introduced. By virtue of (1.1) we will have 

~mn (zl,  x2,t) = exp ( i~mt ~- inx2)r  ~ (xl). ( 1 . 2 )  

The system of governing equations of shallow shell theory after making the system operators 
dimensionless and substituting functions from (I.I)and (1.2) becomes 
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where 

d~AAcD~ n (x) -- 5~W~ ~ (x) = 0, 

e ~ A A W ~  (x) -~ A ~  ~ (x) ~ = Q, (x), 

(1.3) 

a = .xs \-7 ~ j - ~ ~ \ A e= ] '~ --~-:, ; 

x = xl / l ;  B ,  = B,'l; K~ =- K l l ;  K*2 -= K2l; W~n = h - l W " ~ ;  
1 1 

cD. ~ = [12 (l  - -  C-)I~ ( E h 3 ) - a @ ~ ;  Q ~  : t 3 [i2 (i - -  v2)] 2 (Eh3) -1 O'~"; 

2 = (h/~)[12(l -- v2)] -I/2 is a small parameter; x, longitudinal coordinate x~[0, I]; ~, 
shell length; h = const, thickness; A(x), B(x) and K1(x), K2(x), Lam& parameters and the 
principal curvatures of the middle surface; v, Poisson ratio; and E, elastic modulus. The 
form of the function Qmn depends on the formulation of the problem. For a strength problem 
Qrm~ = zmn, where z mn = exp (iwm t + inx2)zmn(x~) is the normal surface load, while for a 
natural vibrations problem Qmn = Ph~mWmn ' where p is the density of the material. 

In a correct formulation, the boundary-value problem for system (1.3) should have eight 
boundary conditions, four on each end-face. In this paper, wmn; ~}mn or M~mn; u mn or Nmn; u mn 

or S mn given on the shell end-faces, which corresponds to four framing versions or four hinge 
versions, are considered as boundary conditions. Here M~ is the longitudinal bending moment, 
~}i is the angle of rotation in the meridian plane, and N~ and S are the normal and shear 
forces. Without limiting the generality, only homogeneous boundary conditions will be con- 

sidered. 

Let us write system (1.3) in operator form, whereupon we introduce the vector of the 
solution Y(x) = (~mn(x) W mn(~) and the vector of the right side P(x) = (0 Q,n~n(x)): 

e2L(x)Y(x) - -  M(x)Y(x)  + N(x)Y(x)  ---- P(x),  ( 1 . 4 )  

w h e r e  L ( x ) ,  M ( x ) ,  N ( x )  a r e  2 • 2 m a t r i c e s  w i t h  t h e  e l e m e n t s  

L n  L~ 2 ~ ~ (-X d l = = E: \'-A- ~x/JJ; L12 = L~I = O; 

- M , ,  = N,, = X .  = , - T ;  

2 $ n K 1 
- -  N21 = N m - -  B2, 

After replacement of the boundary quantities by means of the desired functions, the boundary 
conditions can be written in the following form with the vector representation of the solu- 
tion taken into account 

Dlj  (x) ~ ( ) {,.._--~ 0, D ~  (x) Y (x) I~=~O 0 (] ---- 0 , i ) ,  ( I .  5 ) 

where D~j and Dzj are 2 x 2 matrices with differential operators as elements in the general 
case. It is considered that the matrix D~j contains higher-order operators (up to the third, 
inclusive, in certain versions of the boundary conditions). Here and henceforth, if not 
specially stipulated otherwise, x~ = 0, x~ = I. 

2. The theory of representation of the solution in the form of a series in a small 
parameter developed in [5, 6] for ordinary differentia] equations can be applied formally to 
solve the problem (1.4), (1.5). The solution of problem (].4), (1.5) is sought in the form 

Y = Yo + eYt + ... -+- so (Yoo + sYot " -..) + e~(Yao + eY~t -+- . . .) .  ( 2 . 1 )  

The first group of terms represents an asymptotic series of the slowly varying part of the.  
solution, while the second and third groups are asymptotic series for the edge effects. The 
quantities p and c (on the order of the edge effects) are determined by the kind of boundary 
conditions. For small e it is sufficient to keep only the principal terms of the series for 
the complete solution; hence, it is possible to stop after the first step of the iteration 
process proposed in [5]. The first term in the series of the slowly varying part of the 
solution is sought as the solution of the equation 
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- - M ( @ Y o ( ~  -I-N(x)Yo(x) = P(x). ( 2 . 2 )  

The principal terms of the edge effects are determined from the equations 

a~L(xi)Y~o(x) - -  M(xOYio(x)  = 0 (i = O, t)  ( 2 . 3 )  

with the additional condition 

Yoo (x)x~--~ O, Y~o (x) z~-Z-~ O. ( 2 . 4 )  

The process of freezing the coefficients of (2.3) at the boundary point s is explained by the 
fact that the solutions (2.3) satisfying the conditions (2.4) differ substantially from zero 
only in the neighborhood of a boundary point commensurate with the magnitude of the small 
parameter e. For shells with weak variability of the generatrix near the end-faces, the 
values of the derivatives of the coefficients multiplied by ~ can be neglected as compared 
with the value of the coefficients themselves. The solutions of (2.3) satisfying conditions 
(2.4) are written in the form 

( e o s ~ i ( x - - x ~ ) ( - - l ) l - i s i n ~ i ( x - - x O l ( C r  (2.5) 

Y~0 = exp [ ( - -  1) z-i  =i(x - -  x0] \ ( - -  i) ~ sin [~i (x - -  x 0 cos ~ (x - -  x 0 ] \Ci~/ 

~ -. [ (~  + b~) ~/' + @ ' ,  ~ = [ (~  + b~ ,  ' ~ ,  - b~]- ~, 

AS (x0 * b~ = , C~j = const (] = 1, 2). K~ (x 0 n~A ~ (x~) 
at = 2e 2 , B. ~ (xi) 

To f o r m u l a t e  t he  b o u n d a r y  c o n d i t i o n s  on the  s o l u t i o n  o f  ( 2 . 2 ) ,  we s h o u l d  p r o c e e d  as  f o l -  
l o w s :  s u b s t i t u t e  t he  r e p r e s e n t a t i o n  o f  t he  s o l u t i o n  i n  t h e  fo rm ( 2 . 1 )  w i t h  a s p e c i f i c  k i n d  
o f  Yio f r o m  ( 2 . 5 )  i n t o  ( 1 . 5 ) ,  f o r  ! a r g e  a• s o l u t i o n s  o f  b o u n d a r y - l a y e r  t y p e  can  be  c o n s i d e r e d  
z e r o  a t  o p p o s i t e  b o u n d a r y  p o i n t s .  We s o l v e  t h e  s y s t e m  o b t a i n e d  f o r  C i j  and o b t a i n  two g r o u p s  
of equalities 

(Ca~ 
Ci2] = Da~ (x) Yo (x)Ix=x~ (~ = O, t); ( 2 . 6 )  

Dai (3  Yo (x)Ix=~ = 0 (i = 0, I). (2 .7 )  

Here D3i, D~i are 2 • 2 matrices with differential operators as elements (in the general 
case). The specific form of the matrices D~i and D4i is determined by the form of the 
matrices Dzi and D=i. In practical computations it is more expedient to construct the matrix 
D3i from the matrix Dzi. The equalities (2.7) have the meaning of boundary conditions for 
(2.2), while the constants of the solutions (2.5) are determined from (2.6) after having 
solved the problem (2.2) and (2.7). 

3. For the numerical integration of the limit problem (2.2) and (2.7), whose order is 
two below the original, any standard method [7] can be utilized. However, as is shown in 
[8], among the solutions of the problem (2.2) and (2.7) exponentially damped components are 
kept, which have a quite definite edge effect nature in problems with large n or IK~. In 
this connection, the Godunov [9] method of discrete orthogonalization, which is highly recom- 
mended and extensively utilized in shell theory problems, is used in this paper. After 
numerical integration of the limit problem (2.2) and (2.7), the constants of the solutions 
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(2.5) are determined from the equalities (2.6). The total solution is an approximation of 
the solution of the initial problem and according to estimates [5], the error in the solution 
constructed is of the order of 0(~). In order to improve the approximation, several steps of 
the iteration process should still be executed [5], which actually reduce to solving the same 
problems for (2.2) and (2.3) with right sides that are functions of the solutions already 
constructed. Since the parameter e is of the order of 0(10 -2 ) in real thin-walled shells, 
and performing the next iterations causes no substantial difficulties in comparison with 
those elucidated above, the procedure to construct the next approximations will not be con- 
sidered. 

Considered as an application is a shell with the generator r(x) = 0.45 + 0.2x -- 0.2x 2, 
~/h = 200 with the boundary conditions w = 0, @I = 0, N~ = 0, S = 0 on both end-faces. The 
material characteristics are v = 0.3, E = 2-10~~ 2. Displayed in Fig. ] is the normal 
deflection that occurs in a shell subjected to normal internal pressure with the oscillation 
index n = 15. The deflection is symmetric relative to the middle of the segment [0, i], 
hence components of the solution are displayed in the left side of Fig. ] (] is the edge 
effect, 2 is the result of the numerical solution), and the complete solution is on the rfght. 
The natural vibration modes of this same shell with the same boundary conditions for n = 4 

22 2 
are displayed in Figs. 2-4 for values of the frequency parameters I = p~ ~m/Es equal to 
221.22, 510.05, 1007.04, respectively. The modes are decomposed into components in the left 
sides of Figs. 2-4, and total solutions are presented in the right. The edge effect and the 
numerical result are denoted by the numbers ] and 2. 

An advantage of this method of approximately solving the problem is the fact that the 
problem is solved numerically whose order of the differential operator is two below the ori- 
ginal, while there are no edge effects among the solutions of this problem which are gener- 
ated by the thin-walledness of the structure. The method will be all the more effective, the 
higher the thin-walledness of the shell under consideration. 
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STABILITY OF THIN SHALLOW SHELLS OF NEGATIVE 

GAUSSIAN CURVATURE 

V. M. Ermolenko and V. M. Kornev UDC 539.31 

The density of eigennumbers in stability problems of shells with positive Gaussian 
curvature is examined in [I-3]. An interpretation of the results obtained was proposed that 
permits relating the density of the initial section of the spectrum to the shell responsive- 
ness to small perturbations during experiment, and also to imperfections in the geometric 
shape of the shell. Investigation of the spectrum in problems studied less, stability prob- 
lems of shells of negative Gaussian curvature, is natural. Of greatest interest are shells 
of negative Gaussian curvature that are almost cylindrical. 

The system of stability equations of shallow shells whose radii are almost constant has 
the form [4] 

(Eh) -~ V2V~ --h~w O, Dv~V2w + h ~  = aV2V~ (a~w,= q- ~w,~v)t 

a a l = - - T 1  ' ~ = - - T 2  ' V 2 =  0 ~ 0 ~ t 0 ~ I 0 ~ 
ox ~ + ~ ,  ~I = ~ ~ + ~ o~ ~' 

w h e r e  x ,  y a r e  C a r t e s i a n  c o o r d i n a t e s ;  w ( x ,  y ) ,  n o r m a l  d e f l e c t i o n ;  ~ ( x ,  y ) ,  s t r e s s  f u n c t i o n ;  
T~, T~, forces in the shell middle surface; and R~ ~const, R~consto The eigenfunctions of 
stability problems of hinge-supported panels have the form 

~(x, y) = % s in  k~x s in  k~y, 
w(x, y) = wo sin kmx sin k~y, kn = n~/a, km = m~/b, 

n, m = i, 2, . . . 

The e i g e n f u n c t i o n s  f o r  s h e l l s  o f  r e v o l u t i o n  a r e  a l s o  t h e  f o l l o w i n g  

~(x, y) = % s i n  kmx cos k~y, (1)  

w(x, y ) =  w0sin k~x cos k,y, 

k n = n / R ,  km = m v / ~ ,  n = 0 ,  ] ,  . . . ,  m = I ,  2 ,  . . .  . F o r  n = 0,  we o b t a i n  t h e  e i g e n f u n c t i o n s  
o f  a x i s y m m e t r i c  b u c k l i n g  f r o m  t h e  r e l a t i o n s h i p s  ( l ) .  The e i g e n n u m b e r s  o f  t h e  p r o b l e m  u n d e r  
c o n s i d e r a t i o n  a r e  f o u n d  f r o m  t h e  f o r m u l a  

n /  4 ~ ~2 ' 2 ~ ( . ~ + k 2 ~ + ~  (ka+~k~) (2) 
= "  (k~ + ~k,~) (k~+ hl)': ' 

w h e r e  ~ = - o ~ / D ,  • = Eh/DR= =, X = R2 /R1 ,  ~ = a = / a ~ .  

L e t  us i n t r o d u c e  a p o l a r  c o o r d i n a t e  s y s t e m  

k , ~ = r c o s O ,  k~ = r s i n  O (r >7 0,  0 ~ 0 < ~ / 2 )  ( 3 )  

in the plane of the wave numbers km, kn. After substituting these expressions for km, kn 
into (2), we obtain a biquadratic equation in the polar radius r. After still another sub- 
stitution ~ =sin 20 (0~-~ ~ i), the formula for r takes the form (N ---- %/2x ~) 

r~,~ ---- z~ {~1 [1 - -  ~ (t  - -  @)]=h ~f~2 [1 - -  ~ (1 - -  ~)]~ - -  [ i - - ~ ( t  - -  %)]ff}. (4)  

The r e l a t i o n s h i p  (4)  d e t e r m i n e s  t h e  b o u n d a r y  o f  t h e  doma in  ~ w i t h i n  w h i c h  ~ < Do. I t  i s  
meaningful under the condition 

~ [ l  - ~(1 - ~ ) ] ~ - -  [1 - ~(~ - ~ ) 1 - ' .  ~ o.  (5) 
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